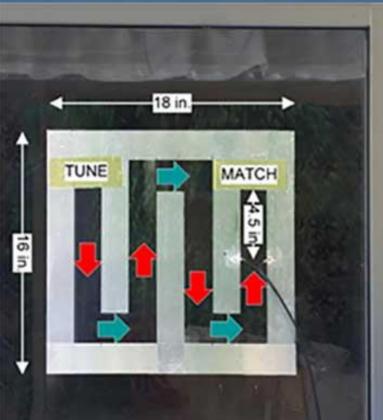
Practeral Antennas

Copper Wire Aluminum Tubing

Hams Generally **Consider ONLY These Antenna** Building **Materials**

Copper Tubing Stainless Rod



Versatile Building Materials

Foil Tape for Slot Antennas

Slot Antennas for Ham Radio Amazon Kindle

Spirally Loaded Copper Tape and PVC Dipole QST Oct. 2020

This easy-to-build 2-meter-band vertical dipole is only 40% as tall as a J-pole.

High interest for HF

John Portune, W6NBC

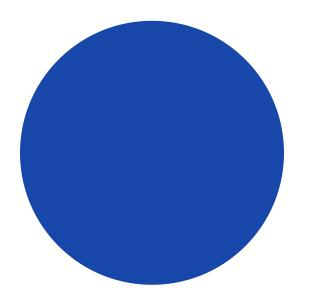
Here is a simple starter antenna — especially for a new ham — that offers good performance, and would be a good radio club build-it-

Continuously Loaded Foil Tape Antennas

Building Small Tape Helices (Emphasis on HF)

Lower Frequency

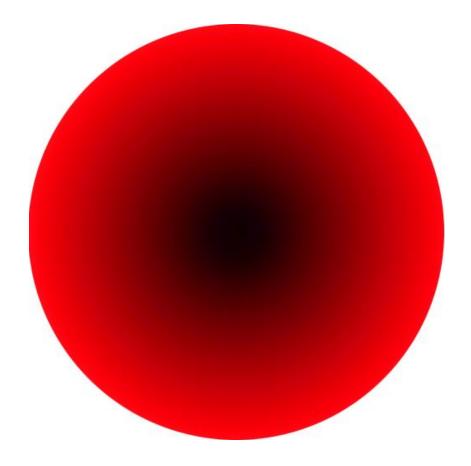
1. Power


2. Skin effect

3. Efficiency

Power

Flat = Round ?



Width = Circumference

Same Cross Section

e.g. 3/8 tubing = 1 in. 1.5 mill tape (Also works for NEC modeling)

Skin Effect

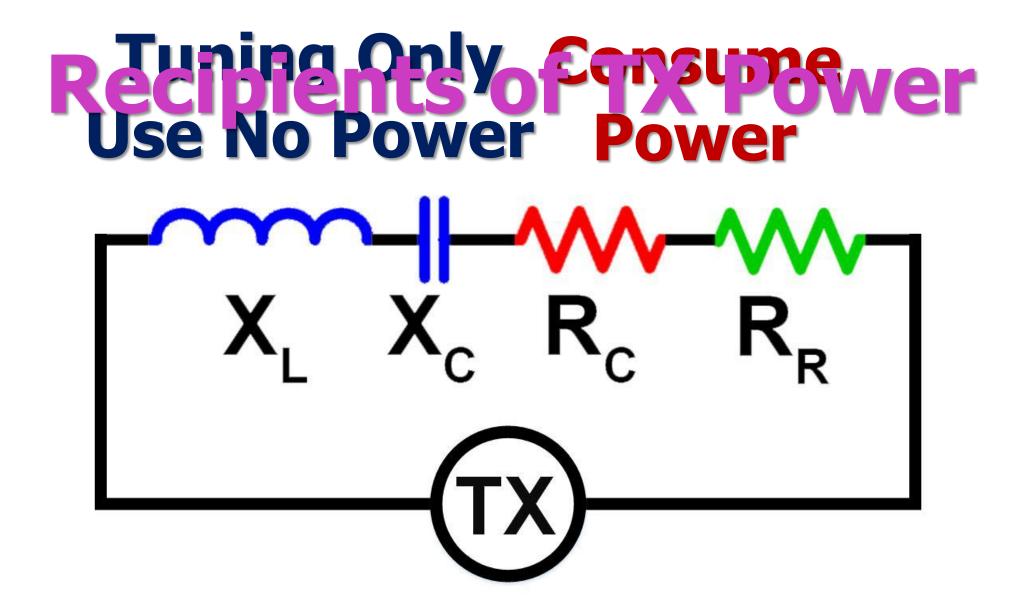
AC/RF flows on surface Uses less of conductor

Band m	MHz	Aluminum mils	Copper mils
160	1.8	2.4	1.9
80	3.5	1.7	1.4
60	5	1.4	1.2
40	7	1.2	1.0
30	10	1.0	0.8
20	14	0.9	0.7
17	18	0.8	0.6
15	21	0.7	0.6
12	25	0.6	0.5
10	28	0.6	0.5
6	50	0.5	0.4
2	144	0.3	0.2
1.25	220	0.2	0.2
0.7	440	0.2	0.1

Skin=thickness 2 sides Double depth

Pay attention when buying

Add layers for lower bands



Auminum tape is just as good at copper 40% Less conductive Double skin depth



Antenna Efficiency

Antenna Efficiency is the Percent of TX Power NOT lost

Conductor Resistance – R_c

Conductor Resistance R_c Makes HEAT

Radiation Resistance R_R Makes RADIO WAVES

Radiation Resistance – R_R

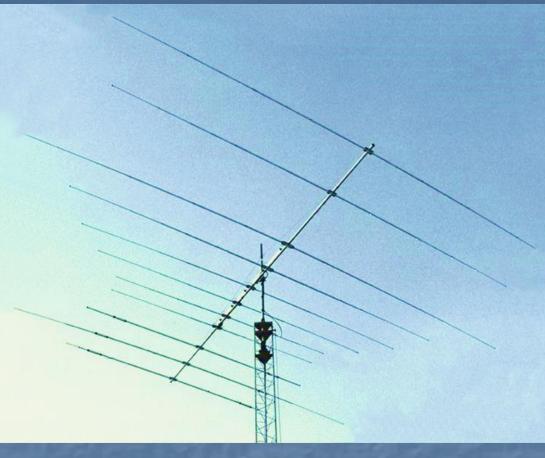
 $\vec{\nabla}\cdot\vec{D}=\rho$ $\vec{\nabla} \cdot \vec{B} = 0$ $\vec{\nabla}\times\vec{H}=\vec{j}+\frac{\partial\vec{D}}{\partial t}$ $\vec{\nabla}\times\vec{E}=-\frac{\partial\vec{B}}{\partial t}$ 9. Clerk Theawell

Empty Space is Not Nothing

Radiation Resistance – R_R A real (load on) or Resistance in an antenna

Push on it – It Makes Waves by space

caused


Antenna Size

R_c \ddagger directly with size 1/2 size – 1/2 R_c

R_R ÷ square of size 1/2 size – 1/4 R_R

LARGE $\approx \lambda$ R_R/Eff. – High

$\frac{\text{SMALL} \approx \lambda}{R_R / \text{Eff.} - \text{Low}}$

Let's Lower

Frequency

10 ft. 4 in. PVC Pipe No-Radial OCF Dipole

2 in. Aluminum Tape, 2 in. gap 25 MHz – 10, 12m

1 in. Aluminum Tape, 1 in. gap 15 MHz – 20, 17, 15m

5 ft. 3.5 in. Pool Noodle No-Radial OCF Dipole

1 in. Tape, **1/2** in. gap More than one in series

Ways to Change Frequency Pole Length – More Turns Pole Diameter – More L • Tape Width – Higher R_c • Tape Spacing – Higher R_c

LESS width/spacing? **Ever Use these? Efficient?**

If you build one, send me photos and details I enjoy feedback

jportune @aol.com

w6nbc.com

DØGGY

"Thats all Folks

Practical Metal Foil Tape Antennas